運放振鈴現象解析
在電子電路領域,尤其是在運算放大電路中,振鈴現象是一種常見的高頻波動現象,其主要特征為電路或系統中出現振蕩與失真。具體而言,運放振鈴現象指的是在特定條件下,運算放大電路的輸出信號產生周期性振蕩。這類振蕩通常包含多個諧波分量,具備一定的振幅和頻率。
一、振鈴產生的根源剖析
以一個同相比例放大電路為例,假設信號源為頻率10K、幅值1V的方波,運放采用雙電源供電方式。

從PCB板的寄生參數角度深入分析,運放振鈴產生的關鍵原因在于:反向輸入端的寄生電容與反饋電阻共同構成一個低通濾波器,進而導致相位滯后現象。在運算放大器中,同相端與反相端的電壓差值理論上會被放大無窮大倍,然而實際情況下放大倍數并非無窮大,這主要依靠輸出端的反饋回路來維持動態平衡,確保輸出端電壓穩定。當輸出電壓過大時,反饋到反相端的電壓隨之增大,促使輸出端電壓減小;反之,當輸出端電壓過小時,反饋到反相端的電壓減小,輸出端電壓則會增大。如此循環往復,形成動態平衡,維持輸出端電壓的穩定。

從PCB板的寄生參數角度深入分析,運放振鈴產生的關鍵原因在于:反向輸入端的寄生電容與反饋電阻共同構成一個低通濾波器,進而導致相位滯后現象。在運算放大器中,同相端與反相端的電壓差值理論上會被放大無窮大倍,然而實際情況下放大倍數并非無窮大,這主要依靠輸出端的反饋回路來維持動態平衡,確保輸出端電壓穩定。當輸出電壓過大時,反饋到反相端的電壓隨之增大,促使輸出端電壓減小;反之,當輸出端電壓過小時,反饋到反相端的電壓減小,輸出端電壓則會增大。如此循環往復,形成動態平衡,維持輸出端電壓的穩定。
然而,當反饋回路出現延遲時,問題便會出現。例如,當輸出端電壓已經達到預定值時,由于反饋回路延遲,運放誤判為輸出端電壓尚未達到預定值,繼續增大輸出電壓。等到運放反應過來后,又發現輸出電壓過大,隨即開始減小輸出電壓。同樣地,當輸出端電壓減小到預定值時,因延遲存在,運放誤判為電壓未減小到預定值,繼續減小輸出電壓,直到反應過來時輸出電壓又低于預定值,于是又開始增大輸出電壓。如此循環往復,便產生了振鈴現象。
二、振鈴產生案例分析
在模擬實驗中,人為在反相端加入寄生電容10nF,其他參數保持不變。

通過實驗觀測,輸出波形呈現出明顯的振鈴特征。

這進一步驗證了寄生參數對運放振鈴現象產生的顯著影響。

通過實驗觀測,輸出波形呈現出明顯的振鈴特征。

這進一步驗證了寄生參數對運放振鈴現象產生的顯著影響。
三、振鈴產生的多種原因及應對策略
相位裕度不足
原因:相位裕度是指輸入到輸出之間的相位差。若運算放大電路的相位裕度不足,會引發正反饋路徑中的信號增益和相位關系失衡,從而導致振鈴現象。
解決方法:通過增加相位裕度,借助合適的相位校準或穩相網絡來確保系統的穩定性,進而有效避免振鈴現象的發生。
負載容量過大
原因:負載容量過大將使電路的頻率響應發生改變,影響系統穩定性,進而容易引發振鈴。
解決方法:優化負載設計,減小負載電容,以此提高電路的帶寬和穩定性,降低振鈴現象出現的可能性。
不當的頻率補償
原因:頻率補償不當會導致電路的頻率響應不穩定,進而產生振鈴現象。
解決方法:合理設計頻率補償電路,精心選擇合適的補償元件和參數,確保頻率響應的穩定性,避免振鈴現象。
輸入信號幅度過大
原因:輸入信號幅度過大,超出運算放大器的線性范圍,會導致非線性失真和振鈴現象。
解決方法:對輸入信號幅度進行限制,采取增加可調節的偏置電壓等手段對輸入信號進行調整,使其保持在運算放大器的線性范圍內,從而減少振鈴現象的發生。
〈烜芯微/XXW〉專業制造二極管,三極管,MOS管,橋堆等,20年,工廠直銷省20%,上萬家電路電器生產企業選用,專業的工程師幫您穩定好每一批產品,如果您有遇到什么需要幫助解決的,可以直接聯系下方的聯系號碼或加QQ/微信,由我們的銷售經理給您精準的報價以及產品介紹
〈烜芯微/XXW〉專業制造二極管,三極管,MOS管,橋堆等,20年,工廠直銷省20%,上萬家電路電器生產企業選用,專業的工程師幫您穩定好每一批產品,如果您有遇到什么需要幫助解決的,可以直接聯系下方的聯系號碼或加QQ/微信,由我們的銷售經理給您精準的報價以及產品介紹
聯系號碼:18923864027(同微信)
QQ:709211280